一、知识点
两个多项式的商 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x) 称为有理函数,又称有理分式。
当分子多项式 P ( x ) P(x) P(x) 的次数小于分母多项式 Q ( x ) Q(x) Q(x) 的次数时,称这有理函数为真分式,否则称为假分式。
对于真分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),如果分母可分解为两个多项式的乘积 Q ( x ) = Q 1 ( x ) Q 2 ( x ) Q(x)=Q_1(x)Q_2(x) Q(x)=Q1(x)Q2(x),且 Q 1 ( x ) Q_1(x) Q1(x) 与 Q 2 ( x ) Q_2(x) Q2(x) 没有公因式,那么它可分拆成两个真分式之和 P ( x ) Q ( x ) = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) \frac{P(x)}{Q(x)}=\frac{P_1(x)}{Q_1(x)}+\frac{P_2(x)}{Q_2(x)} Q(x)P(x)=Q1(x)P1(x)+Q2(x)P2(x), 该步骤称为把真分式化成部分分式之和。
如果 Q 1 ( x ) Q_1(x) Q1(x) 或 Q 2 Q_2 Q2 还能再分解成两个没有公因式的多项式的乘积,就可再分拆成更简单的部分分式。
最后,有理函数的分解式中只出现多项式、 P 1 ( x ) ( x − a ) k \frac{P_1(x)}{(x-a)^k} (x−a)kP1(x)、 P 2 ( x ) ( x 2 + p x + q ) l \frac{P_2(x)}{(x^2+px+q)^l} (x2+px+q)lP2(x) 等三类函数(这里 p 2 − 4 q < 0 p^2-4q<0 p2−4q<0, P 1 ( x ) P_1(x) P1(x) 为小于 k k k 次的多项式, P 2 ( x ) P_2(x) P2(x) 为小于 2 l 2l 2l 次的多项式).针对各部分分别求积分。
二、练习题(求不定积分)
1. ∫ x 3 x + 3 d x = ∫ x 3 + 27 − 27 x + 3 d x = ∫ ( x + 3 ) ( x 2 − 3 x + 9 ) − 27 x + 3 d x = ∫ ( x 2 − 3 x + 9 ) d x − ∫ 27 x + 3 d x = 1 3 x 3 − 3 2 x 2 + 9 x − 27 l n ∣ x + 3 ∣ + C \begin{aligned} 1. \int \frac{x^3}{x+3}dx &=\int \frac{x^3+27-27}{x+3}dx\\ &=\int \frac{(x+3)(x^2-3x+9)-27}{x+3}dx\\ &=\int (x^2-3x+9)dx-\int \frac{27}{x+3}dx\\ &=\frac{1}{3}x^3-\frac{3}{2}x^2+9x-27ln|x+3|+C \end{aligned} 1.∫x+3x3dx=∫x+3x3+27−27dx=∫x+3(x+3)(x2−3x+9)−27dx=∫(x2−3x+9)dx−∫x+327dx=31x3−23x2+9x−27ln∣x+3∣+C
2. ∫ 2 x + 3 x 2 + 3 x − 10 d x = ∫ d ( x 2 + 3 x − 10 ) x 2 + 3 x − 10 = l n ∣ x 2 + 3 x − 10 ∣ + C \begin{aligned} 2. \int \frac{2x+3}{x^2+3x-10}dx &=\int \frac{d(x^2+3x-10)}{x^2+3x-10}\\ &=ln|x^2+3x-10|+C \end{aligned} 2.∫x2+3x−102x+3dx=∫x2+3x−10d(x2+3x−10)=ln∣x2+3x−10∣+C
3. ∫ x + 1 x 2 − 2 x + 5 d x = ∫ x − 1 + 2 ( x − 1 ) 2 + 4 d x = ∫ x − 1 ( x − 1 ) 2 + 4 d x + ∫ 2 ( x − 1 ) 2 + 4 d x = 1 2 ∫ d [ ( x − 1 ) 2 + 4 ] ( x − 1 ) 2 + 4 + 1 2 ∫ d x ( x − 1 2 ) 2 + 1 = 1 2 l n ( x 2 − 2 x + 5 ) + a r c t a n x − 1 2 + C \begin{aligned} 3. \int \frac{x+1}{x^2-2x+5}dx &=\int \frac{x-1+2}{(x-1)^2+4}dx\\ &=\int \frac{x-1}{(x-1)^2+4}dx+\int \frac{2}{(x-1)^2+4}dx\\ &=\frac{1}{2} \int \frac{d[(x-1)^2+4]}{(x-1)^2+4}+\frac{1}{2}\int \frac{dx}{(\frac{x-1}{2})^2+1}\\ &=\frac{1}{2}ln(x^2-2x+5)+arctan\frac{x-1}{2}+C \end{aligned} 3.∫x2−2x+5x+1dx=∫(x−1)2+4x−1+2dx=∫(x−1)2+4x−1dx+∫(x−1)2+42dx=21∫(x−1)2+4d[(x−1)2+4]+21∫(2x−1)2+1dx=21ln(x2−2x+5)+arctan2x−1+C
4. ∫ d x x ( x 2 + 1 ) = ∫ ( 1 x − x x 2 + 1 ) d x = l n ∣ x ∣ − 1 2 ∫ d ( x 2 + 1 ) x 2 + 1 = l n ∣ x ∣ − 1 2 l n ( x 2 + 1 ) + C \begin{aligned} 4. \int \frac{dx}{x(x^2+1)} &=\int (\frac{1}{x}-\frac{x}{x^2+1})dx\\ &=ln|x|-\frac{1}{2}\int \frac{d(x^2+1)}{x^2+1}\\ &=ln|x|-\frac{1}{2}ln(x^2+1)+C \end{aligned} 4.∫x(x2+1)dx=∫(x1−x2+1x)dx=ln∣x∣−21∫x2+1d(x2+1)=ln∣x∣−21ln(x2+1)+C
5. ∫ 3 x 3 + 1 d x = ∫ ( 1 x + 1 − x − 2 x 2 − x + 1 ) d x = ∫ 1 x + 1 d x − x − 2 x 2 − x + 1 d x = l n ∣ x + 1 ∣ − ∫ x − 1 2 x 2 − x + 1 d x + 3 2 ∫ d x x 2 − x + 1 = l n ∣ x + 1 ∣ − 1 2 ∫ 2 x − 1 x 2 − x + 1 d x + 3 2 ∫ d x ( x − 1 2 ) 2 + 3 4 = l n ∣ x + 1 ∣ − 1 2 ∫ d ( x 2 − x + 1 ) x 2 − x + 1 + 3 2 ∫ d x 3 4 [ ( 2 x 3 − 1 3 ) 2 + 1 ] = l n ∣ x + 1 ∣ − 1 2 l n ( x 2 − x + 1 ) + 3 ∫ d ( 2 x 3 − 1 3 ) ( 2 x 3 − 1 3 ) 2 + 1 = l n ∣ x + 1 ∣ − 1 2 l n ( x 2 − x + 1 ) + 3 a r c t a n ( 2 3 x 3 − 3 3 ) + C \begin{aligned} 5. \int \frac{3}{x^3+1}dx &=\int (\frac{1}{x+1}-\frac{x-2}{x^2-x+1})dx\\ &=\int \frac{1}{x+1}dx-\frac{x-2}{x^2-x+1}dx\\ &=ln|x+1|-\int \frac{x-\frac{1}{2}}{x^2-x+1}dx+\frac{3}{2}\int \frac{dx}{x^2-x+1}\\ &=ln|x+1|-\frac{1}{2}\int \frac{2x-1}{x^2-x+1}dx+\frac{3}{2}\int\frac{dx}{(x-\frac{1}{2})^2+\frac{3}{4}}\\ &=ln|x+1|-\frac{1}{2}\int \frac{d(x^2-x+1)}{x^2-x+1}+\frac{3}{2}\int \frac{dx}{\frac{3}{4}[(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})^2+1]}\\ &=ln|x+1|-\frac{1}{2}ln(x^2-x+1)+\sqrt{3}\int \frac{d(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})}{(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})^2+1}\\ &=ln|x+1|-\frac{1}{2}ln(x^2-x+1)+\sqrt{3}arctan(\frac{2\sqrt{3}x}{3}-\frac{\sqrt{3}}{3})+C \end{aligned} 5.∫x3+13dx=∫(x+11−x2−x+1x−2)dx=∫x+11dx−x2−x+1x−2dx=ln∣x+1∣−∫x2−x+1x−21dx+23∫x2−x+1dx=ln∣x+1∣−21∫x2−x+12x−1dx+23∫(x−21)2+43dx=ln∣x+1∣−21∫x2−x+1d(x2−x+1)+23∫43[(32x−31)2+1]dx=ln∣x+1∣−21ln(x2−x+1)+3∫(32x−31)2+1d(32x−31)=ln∣x+1∣−21ln(x2−x+1)+3arctan(323x−33)+C
6. ∫ x 2 + 1 ( x + 1 ) 2 ( x − 1 ) d x \begin{aligned} 6. \int \frac{x^2+1}{(x+1)^2(x-1)}dx\\ \end{aligned} 6.∫(x+1)2(x−1)x2+1dx
设 x 2 + 1 ( x + 1 ) 2 ( x − 1 ) = A x + B ( x + 1 ) 2 + C x − 1 \frac{x^2+1}{(x+1)^2(x-1)}=\frac{Ax+B}{(x+1)^2}+\frac{C}{x-1} (x+1)2(x−1)x2+1=(x+1)2Ax+B+x−1C,得 A = 1 2 A=\frac{1}{2} A=21, B = − 1 2 B=-\frac{1}{2} B=−21, C = 1 2 C=\frac{1}{2} C=21,则
∫ x 3 + 1 ( x + 1 ) 2 ( x − 1 ) d x = ∫ [ x − 1 2 ( x + 1 ) 2 + 1 2 ( x − 1 ) ] d x = 1 2 ∫ [ x + 1 ( x + 1 ) 2 − 2 ( x + 1 ) 2 + 1 x − 1 ] d x = 1 2 ( l n ∣ x + 1 ∣ + 2 x + 1 + l n ∣ x − 1 ∣ ) + C = 1 x + 1 + 1 2 l n ∣ x 2 − 1 ∣ + C \begin{aligned} \int \frac{x^3+1}{(x+1)^2(x-1)}dx &=\int [\frac{x-1}{2(x+1)^2}+\frac{1}{2(x-1)}]dx\\ &=\frac{1}{2}\int [\frac{x+1}{(x+1)^2}-\frac{2}{(x+1)^2}+\frac{1}{x-1}]dx\\ &=\frac{1}{2}(ln|x+1|+\frac{2}{x+1}+ln|x-1|)+C\\ &=\frac{1}{x+1}+\frac{1}{2}ln|x^2-1|+C \end{aligned} ∫(x+1)2(x−1)x3+1dx=∫[2(x+1)2x−1+2(x−1)1]dx=21∫[(x+1)2x+1−(x+1)22+x−11]dx=21(ln∣x+1∣+x+12+ln∣x−1∣)+C=x+11+21ln∣x2−1∣+C
7. ∫ x d x ( x + 1 ) ( x + 2 ) ( x + 3 ) \begin{aligned} 7. &\int \frac{xdx}{(x+1)(x+2)(x+3)}\\ \end{aligned} 7.∫(x+1)(x+2)(x+3)xdx
设 x ( x + 1 ) ( x + 2 ) ( x + 3 ) = A x + 1 + B x + 2 + C x + 3 \frac{x}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3} (x+1)(x+2)(x+3)x=x+1A+x+2B+x+3C,得 A = − 1 2 A=-\frac{1}{2} A=−21, B = 2 B=2 B=2, C = − 3 2 C=-\frac{3}{2} C=−23,则
∫ x d x ( x + 1 ) ( x + 2 ) ( x + 3 ) = ∫ [ − 1 2 ( x + 1 ) + 2 x + 2 − 3 2 ( x + 3 ) ] d x = − 1 2 l n ∣ x + 1 ∣ + 2 l n ∣ x + 2 ∣ − 3 2 l n ∣ x + 3 ∣ + C = 1 2 l n ( x + 2 ) 4 ∣ ( x + 1 ) ( x + 3 ) 3 ∣ + C \begin{aligned} \int \frac{xdx}{(x+1)(x+2)(x+3)} &=\int [-\frac{1}{2(x+1)}+\frac{2}{x+2}-\frac{3}{2(x+3)}]dx\\ &=-\frac{1}{2}ln|x+1|+2ln|x+2|-\frac{3}{2}ln|x+3|+C &=\frac{1}{2}ln\frac{(x+2)^4}{|(x+1)(x+3)^3|}+C \end{aligned} ∫(x+1)(x+2)(x+3)xdx=∫[−2(x+1)1+x+22−2(x+3)3]dx=−21ln∣x+1∣+2ln∣x+2∣−23ln∣x+3∣+C=21ln∣(x+1)(x+3)3∣(x+2)4+C
8. ∫ x 5 + x 4 − 8 x 3 − x d x = ∫ ( x 5 + x 4 x 3 − x − 8 x 3 − x ) d x = ∫ x 4 ( x + 1 ) x ( x + 1 ) ( x − 1 ) d x − ∫ 8 x ( x + 1 ) ( x − 1 ) d x = ∫ x 3 x − 1 d x − ∫ ( 4 x + 1 − 8 x + 4 x − 1 ) d x = ∫ x 3 − 1 + 1 x − 1 d x − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ − 4 l n ∣ x − 1 ∣ = ∫ ( x 2 + x + 1 + 1 x − 1 ) d x − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ − 4 l n ∣ x − 1 ∣ = x 3 3 + x 2 2 + x + l n ∣ x − 1 ∣ − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ − 4 l n ∣ x − 1 ∣ + C = x 3 3 + x 2 2 + x − 3 l n ∣ x − 1 ∣ − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ + C \begin{aligned} 8. \int \frac{x^5+x^4-8}{x^3-x}dx &=\int (\frac{x^5+x^4}{x^3-x}-\frac{8}{x^3-x})dx\\ &=\int \frac{x^4(x+1)}{x(x+1)(x-1)}dx-\int \frac{8}{x(x+1)(x-1)}dx\\ &=\int \frac{x^3}{x-1}dx-\int (\frac{4}{x+1}-\frac{8}{x}+\frac{4}{x-1})dx\\ &=\int \frac{x^3-1+1}{x-1}dx-4ln|x+1|+8ln|x|-4ln|x-1|\\ &=\int (x^2+x+1+\frac{1}{x-1})dx-4ln|x+1|+8ln|x|-4ln|x-1|\\ &=\frac{x^3}{3}+\frac{x^2}{2}+x+ln|x-1|-4ln|x+1|+8ln|x|-4ln|x-1|+C\\ &=\frac{x^3}{3}+\frac{x^2}{2}+x-3ln|x-1|-4ln|x+1|+8ln|x|+C \end{aligned} 8.∫x3−xx5+x4−8dx=∫(x3−xx5+x4−x3−x8)dx=∫x(x+1)(x−1)x4(x+1)dx−∫x(x+1)(x−1)8dx=∫x−1x3dx−∫(x+14−x8+x−14)dx=∫x−1x3−1+1dx−4ln∣x+1∣+8ln∣x∣−4ln∣x−1∣=∫(x2+x+1+x−11)dx−4ln∣x+1∣+8ln∣x∣−4ln∣x−1∣=3x3+2x2+x+ln∣x−1∣−4ln∣x+1∣+8ln∣x∣−4ln∣x−1∣+C=3x3+2x2+x−3ln∣x−1∣−4ln∣x+1∣+8ln∣x∣+C
9. ∫ d x ( x 2 + 1 ) ( x 2 + x ) = ∫ [ 1 x − x + 1 2 ( x 2 + 1 ) − 1 2 ( x + 1 ) ] d x = l n ∣ x ∣ − 1 2 l n ∣ x + 1 ∣ − 1 4 ∫ ( 2 x x 2 + 1 + 2 x 2 + 1 ) d x = l n ∣ x ∣ − 1 2 l n ∣ x + 1 ∣ − 1 4 l n ( x 2 + 1 ) − 1 2 a r c t a n x + C \begin{aligned} 9. \int \frac{dx}{(x^2+1)(x^2+x)} &=\int [\frac{1}{x}-\frac{x+1}{2(x^2+1)}-\frac{1}{2(x+1)}]dx\\ &=ln|x|-\frac{1}{2} ln|x+1|-\frac{1}{4}\int (\frac{2x}{x^2+1}+\frac{2}{x^2+1})dx\\ &=ln|x|-\frac{1}{2}ln|x+1|-\frac{1}{4}ln(x^2+1)-\frac{1}{2}arctanx+C \end{aligned} 9.∫(x2+1)(x2+x)dx=∫[x1−2(x2+1)x+1−2(x+1)1]dx=ln∣x∣−21ln∣x+1∣−41∫(x2+12x+x2+12)dx=ln∣x∣−21ln∣x+1∣−41ln(x2+1)−21arctanx+C
10. ∫ 1 x 4 − 1 d x = ∫ [ 1 4 ( x − 1 ) − 1 2 ( x 2 + 1 ) − 1 4 ( x + 1 ) ] d x = 1 4 l n ∣ x − 1 ∣ − 1 2 a r c t a n x − 1 4 l n ∣ x + 1 ∣ + C \begin{aligned} 10. \int \frac{1}{x^4-1}dx &=\int [\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}-\frac{1}{4(x+1)}]dx\\ &=\frac{1}{4}ln|x-1|-\frac{1}{2}arctanx-\frac{1}{4}ln|x+1|+C \end{aligned} 10.∫x4−11dx=∫[4(x−1)1−2(x2+1)1−4(x+1)1]dx=41ln∣x−1∣−21arctanx−41ln∣x+1∣+C
11. ∫ d x ( x 2 + 1 ) ( x 2 + x + 1 ) = − 1 2 l n ( x 2 + 1 ) + 1 2 ∫ d ( x 2 + x + 1 ) x 2 + x + 1 + 1 2 ∫ d x ( x + 1 2 ) 2 + ( 3 2 ) 2 = 1 2 l n ( x 2 + x + 1 ) − 1 2 l n ( x 2 + 1 ) + 3 3 a r c t a n 2 x + 1 3 + C \begin{aligned} 11. \int \frac{dx}{(x^2+1)(x^2+x+1)} &=-\frac{1}{2}ln(x^2+1)+\frac{1}{2}\int \frac{d(x^2+x+1)}{x^2+x+1}+\frac{1}{2}\int \frac{dx}{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}\\ &=\frac{1}{2}ln(x^2+x+1)-\frac{1}{2}ln(x^2+1)+\frac{\sqrt{3}}{3}arctan\frac{2x+1}{\sqrt{3}}+C \end{aligned} 11.∫(x2+1)(x2+x+1)dx=−21ln(x2+1)+21∫x2+x+1d(x2+x+1)+21∫(x+21)2+(23)2dx=21ln(x2+x+1)−21ln(x2+1)+33arctan32x+1+C
12. ∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = ∫ x 2 + 1 + 2 x ( x 2 + 1 ) 2 d x = ∫ 2 x ( x 2 + 1 ) 2 d x + ∫ 1 x 2 + 1 d x = − 1 1 + x 2 + a r c t a n x + C \begin{aligned} 12. \int \frac{(x+1)^2}{(x^2+1)^2}dx &=\int \frac{x^2+1+2x}{(x^2+1)^2}dx\\ &=\int \frac{2x}{(x^2+1)^2}dx+\int \frac{1}{x^2+1}dx\\ &=-\frac{1}{1+x^2}+arctanx+C \end{aligned} 12.∫(x2+1)2(x+1)2dx=∫(x2+1)2x2+1+2xdx=∫(x2+1)22xdx+∫x2+11dx=−1+x21+arctanx+C
13. ∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x = − ∫ x 2 + 2 ( x 2 + x + 1 ) 2 d x = − ∫ x 2 + x + 1 − x + 1 ( x 2 + x + 1 ) 2 d x = − ∫ d x x 2 + x + 1 + ∫ x − 1 ( x 2 + x + 1 ) 2 d x ( 1 ) \begin{aligned} 13. \int \frac{-x^2-2}{(x^2+x+1)^2}dx &=-\int \frac{x^2+2}{(x^2+x+1)^2}dx\\ &=-\int \frac{x^2+x+1-x+1}{(x^2+x+1)^2}dx\\ &=-\int \frac{dx}{x^2+x+1}+\int \frac{x-1}{(x^2+x+1)^2}dx\quad (1) \end{aligned} 13.∫(x2+x+1)2−x2−2dx=−∫(x2+x+1)2x2+2dx=−∫(x2+x+1)2x2+x+1−x+1dx=−∫x2+x+1dx+∫(x2+x+1)2x−1dx(1)
以下分别计算 ( 1 ) (1) (1) 式中的两个不定积分:
( 1 − 1 ) : ∫ d x x 2 + x + 1 = ∫ d x ( x + 1 2 ) 2 + 3 4 = 4 3 ∫ d x ( 2 x 3 + 1 3 ) 2 + 1 = 2 3 3 ∫ d ( 2 x 3 + 1 3 ) ( 2 x 3 + 1 3 ) 2 + 1 = 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C 1 \begin{aligned} (1-1): \int \frac{dx}{x^2+x+1} &=\int \frac{dx}{(x+\frac{1}{2})^2+\frac{3}{4}}\\ &=\frac{4}{3}\int \frac{dx}{(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2+1}\\ &=\frac{2\sqrt{3}}{3}\int \frac{d(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})}{(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2+1}\\ &=\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_1 \end{aligned} (1−1):∫x2+x+1dx=∫(x+21)2+43dx=34∫(32x+31)2+1dx=323∫(32x+31)2+1d(32x+31)=323arctan(32x+31)+C1
( 1 − 2 ) : ∫ x − 1 ( x 2 + x + 1 ) 2 = 1 2 ∫ 2 x + 1 − 3 ( x 2 + x + 1 ) 2 d x = 1 2 ∫ 2 x + 1 ( x 2 + x + 1 ) 2 d x − 3 2 ∫ d x ( x 2 + x + 1 ) 2 \begin{aligned} (1-2): \int \frac{x-1}{(x^2+x+1)^2} &=\frac{1}{2}\int \frac{2x+1-3}{(x^2+x+1)^2}dx\\ &=\frac{1}{2}\int \frac{2x+1}{(x^2+x+1)^2}dx-\frac{3}{2} \int \frac{dx}{(x^2+x+1)^2}\\ \end{aligned} (1−2):∫(x2+x+1)2x−1=21∫(x2+x+1)22x+1−3dx=21∫(x2+x+1)22x+1dx−23∫(x2+x+1)2dx
以下分别计算 ( 1 − 2 ) (1-2) (1−2) 中的两个不定积分:
( 1 − 2 − 1 ) : 1 2 ∫ 2 x + 1 ( x 2 + x + 1 ) 2 d x = 1 2 ∫ d ( x 2 + x + 1 ) ( x 2 + x + 1 ) 2 = − 1 2 ( x 2 + x + 1 ) + C 2 \begin{aligned} (1-2-1): \frac{1}{2}\int \frac{2x+1}{(x^2+x+1)^2}dx &=\frac{1}{2}\int \frac{d(x^2+x+1)}{(x^2+x+1)^2}\\ &=-\frac{1}{2(x^2+x+1)}+C_2 \end{aligned} (1−2−1):21∫(x2+x+1)22x+1dx=21∫(x2+x+1)2d(x2+x+1)=−2(x2+x+1)1+C2
( 1 − 2 − 2 ) : 3 2 ∫ d x ( x 2 + x + 1 ) 2 = 3 2 ∫ d x [ ( x + 1 2 ) 2 + 3 4 ] 2 = 4 3 3 ∫ d ( 2 x 3 + 1 3 ) [ ( 2 x 3 + 1 3 ) 2 + 1 ] 2 \begin{aligned} (1-2-2): \frac{3}{2}\int \frac{dx}{(x^2+x+1)^2}&=\frac{3}{2}\int \frac{dx}{[(x+\frac{1}{2})^2+\frac{3}{4}]^2}\\ &=\frac{4\sqrt{3}}{3}\int \frac{d(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})}{[(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2+1]^2}\\ \end{aligned} (1−2−2):23∫(x2+x+1)2dx=23∫[(x+21)2+43]2dx=343∫[(32x+31)2+1]2d(32x+31)
令 t a n t = 2 x 3 + 1 3 tant=\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}} tant=32x+31, 则:
( 1 − 2 − 2 ) = 4 3 3 ∫ d ( t a n t ) ( t a n 2 t + 1 ) 2 = 4 3 3 ∫ s e c 2 t d t s e c 4 t = 4 3 3 ∫ d t s e c 2 t = 4 3 3 ∫ c o s 2 t d t = 4 3 3 ∫ c o s 2 t + 1 2 d t = 3 3 ∫ c o s 2 t d 2 t + 2 3 3 t = 3 3 s i n 2 t + 2 3 3 t + C 3 = 2 3 t a n t 3 ( 1 + t a n 2 t ) + 2 3 3 t + C 3 = 2 3 ( 2 x 3 + 1 3 ) 3 [ 1 + ( 2 x 3 + 1 3 ) 2 ] + 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C 3 = 2 x + 1 2 ( x 2 + x + 1 ) + 2 3 3 a r c t a n x ( 2 x 3 + 1 3 ) + C 3 \begin{aligned} (1-2-2)&=\frac{4\sqrt{3}}{3}\int \frac{d(tant)}{(tan^2t+1)^2}\\ &=\frac{4\sqrt{3}}{3}\int \frac{sec^2tdt}{sec^4t}\\ &=\frac{4\sqrt{3}}{3}\int \frac{dt}{sec^2t}\\ &=\frac{4\sqrt{3}}{3}\int cos^2tdt\\ &=\frac{4\sqrt{3}}{3}\int \frac{cos2t+1}{2}dt\\ &=\frac{\sqrt{3}}{3}\int cos2t d2t+\frac{2\sqrt{3}}{3}t\\ &=\frac{\sqrt{3}}{3}sin2t+\frac{2\sqrt{3}}{3}t+C_3\\ &=\frac{2\sqrt{3}tant}{3(1+tan^2t)}+\frac{2\sqrt{3}}{3}t+C_3\\ &=\frac{2\sqrt{3}(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})}{3[1+(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2]}+\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_3\\ &=\frac{2x+1}{2(x^2+x+1)}+\frac{2\sqrt{3}}{3}arctanx(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_3 \end{aligned} (1−2−2)=343∫(tan2t+1)2d(tant)=343∫sec4tsec2tdt=343∫sec2tdt=343∫cos2tdt=343∫2cos2t+1dt=33∫cos2td2t+323t=33sin2t+323t+C3=3(1+tan2t)23tant+323t+C3=3[1+(32x+31)2]23(32x+31)+323arctan(32x+31)+C3=2(x2+x+1)2x+1+323arctanx(32x+31)+C3
∴ ( 1 − 2 ) = ( 1 − 2 − 1 ) − ( 1 − 2 − 2 ) = − x + 1 x 2 + x + 1 − 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C 2 + C 3 \begin{aligned} \therefore (1-2)&=(1-2-1)-(1-2-2)\\ &=-\frac{x+1}{x^2+x+1}-\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_2+C_3\\ \end{aligned} ∴(1−2)=(1−2−1)−(1−2−2)=−x2+x+1x+1−323arctan(32x+31)+C2+C3
∴ ( 1 ) = − ( 1 − 1 ) + ( 1 − 2 ) = − 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) − x + 1 x 2 + x + 1 − 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C = − x + 1 x 2 + x + 1 − 4 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C \begin{aligned} \therefore (1)&=-(1-1)+(1-2)\\ &=-\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})-\frac{x+1}{x^2+x+1}-\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C\\ &=-\frac{x+1}{x^2+x+1}-\frac{4\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C \end{aligned} ∴(1)=−(1−1)+(1−2)=−323arctan(32x+31)−x2+x+1x+1−323arctan(32x+31)+C=−x2+x+1x+1−343arctan(32x+31)+C
链接:本题用到的三角函数
14. ∫ d x 3 + s i n 2 = ∫ d x 4 − c o s 2 x = ∫ d x c o s 2 x ( 4 c o s 2 x − 1 ) = ∫ s e c 2 d x 4 s e c 2 x − 1 = ∫ d ( t a n x ) 4 t a n 2 + 3 = 3 6 ∫ d ( 2 3 t a n x ) ( 2 3 t a n x ) 2 + 1 = 3 6 a r c t a n ( 2 3 t a n x ) + C \begin{aligned} 14. \int \frac{dx}{3+sin^2}&=\int \frac{dx}{4-cos^2x}\\ &=\int \frac{dx}{cos^2x(\frac{4}{cos^2x}-1)}\\ &=\int \frac{sec^2dx}{4sec^2x-1}\\ &=\int \frac{d(tanx)}{4tan^2+3}\\ &=\frac{\sqrt{3}}{6}\int \frac{d(\frac{2}{\sqrt{3}}tanx)}{(\frac{2}{\sqrt{3}}tanx)^2+1}\\ &=\frac{\sqrt{3}}{6}arctan(\frac{2}{\sqrt{3}}tanx)+C \end{aligned} 14.∫3+sin2dx=∫4−cos2xdx=∫cos2x(cos2x4−1)dx=∫4sec2x−1sec2dx=∫4tan2+3d(tanx)=63∫(32tanx)2+1d(32tanx)=63arctan(32tanx)+C
15. ∫ d x 3 + c o s x = ∫ d x 2 + 2 c o s 2 x 2 = ∫ d ( x 2 ) 1 + c o s 2 x 2 = ∫ s e c 2 x 2 d ( x 2 ) s e c 2 x 2 + 1 = ∫ d ( t a n x 2 ) t a n 2 x 2 + 2 = 1 2 ∫ d ( t a n x 2 ) ( 1 2 t a n x 2 ) 2 + 1 = 1 2 ∫ d ( 1 2 t a n x 2 ) ( 1 2 t a n x 2 ) 2 + 1 = 2 2 a r c t a n ( 2 2 t a n x 2 ) + C \begin{aligned} 15. \int \frac{dx}{3+cosx}&=\int \frac{dx}{2+2cos^2\frac{x}{2}}\\ &=\int \frac{d(\frac{x}{2})}{1+cos^2\frac{x}{2}}\\ &=\int \frac{sec^2\frac{x}{2}d(\frac{x}{2})}{sec^2\frac{x}{2}+1}\\ &=\int \frac{d(tan\frac{x}{2})}{tan^2\frac{x}{2}+2}\\ &=\frac{1}{2}\int \frac{d(tan\frac{x}{2})}{(\frac{1}{\sqrt{2}}tan\frac{x}{2})^2+1}\\ &=\frac{1}{\sqrt{2}} \int \frac{d(\frac{1}{\sqrt{2}}tan\frac{x}{2})}{(\frac{1}{\sqrt{2}}tan\frac{x}{2})^2+1}\\ &=\frac{\sqrt{2}}{2}arctan(\frac{\sqrt{2}}{2}tan\frac{x}{2})+C \end{aligned} 15.∫3+cosxdx=∫2+2cos22xdx=∫1+cos22xd(2x)=∫sec22x+1sec22xd(2x)=∫tan22x+2d(tan2x)=21∫(21tan2x)2+1d(tan2x)=21∫(21tan2x)2+1d(21tan2x)=22arctan(22tan2x)+C
16. ∫ d x 2 + s i n x = ∫ d x 2 + 2 s i n x 2 c o s x 2 = ∫ s e c 2 x 2 d ( x 2 ) s e c 2 x 2 + t a n x 2 = ∫ d ( t a n x 2 ) t a n 2 x 2 + 1 + t a n x 2 = ∫ d ( t a n x 2 ) ( t a n x 2 + 1 2 ) 2 + 3 4 = ∫ d ( t a n x 2 ) 3 4 [ ( 2 3 t a n x 2 + 1 3 ) 2 + 1 ] = 2 3 3 ∫ d ( 2 3 t a n x 2 + 1 3 ) ( 2 3 t a n x 2 + 1 3 ) 2 + 1 = 2 3 3 a r c t a n ( 2 3 t a n x 2 + 1 3 ) + C \begin{aligned} 16. \int \frac{dx}{2+sinx}&=\int \frac{dx}{2+2sin\frac{x}{2}cos{x}{2}}\\ &=\int \frac{sec^2\frac{x}{2}d(\frac{x}{2})}{sec^2\frac{x}{2}+tan\frac{x}{2}}\\ &=\int \frac{d(tan\frac{x}{2})}{tan^2\frac{x}{2}+1+tan\frac{x}{2}}\\ &=\int \frac{d(tan\frac{x}{2})}{(tan\frac{x}{2}+\frac{1}{2})^2+\frac{3}{4}}\\ &=\int \frac{d(tan\frac{x}{2})}{\frac{3}{4}[(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})^2+1]}\\ &=\frac{2\sqrt{3}}{3}\int \frac{d(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})}{(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})^2+1}\\ &=\frac{2\sqrt{3}}{3}arctan(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})+C \end{aligned} 16.∫2+sinxdx=∫2+2sin2xcosx2dx=∫sec22x+tan2xsec22xd(2x)=∫tan22x+1+tan2xd(tan2x)=∫(tan2x+21)2+43d(tan2x)=∫43[(32tan2x+31)2+1]d(tan2x)=323∫(32tan2x+31)2+1d(32tan2x+31)=323arctan(32tan2x+31)+C
17. ∫ d x 1 + s i n x + c o s x = ∫ d x 1 + 2 s i n x 2 c o s x 2 + 2 c o s 2 x 2 − 1 = ∫ d ( x 2 ) s i n x 2 c o s x 2 + c o s 2 x 2 = ∫ s e c 2 x 2 d ( x 2 ) t a n x 2 + 1 = ∫ d ( t a n x 2 + 1 ) t a n x 2 + 1 = l n ∣ t a n x 2 + 1 ∣ + C \begin{aligned} 17. \int \frac{dx}{1+sinx+cosx}&=\int \frac{dx}{1+2sin\frac{x}{2}cos\frac{x}{2}+2cos^2\frac{x}{2}-1}\\ &=\int \frac{d(\frac{x}{2})}{sin\frac{x}{2}cos\frac{x}{2}+cos^2\frac{x}{2}}\\ &=\int \frac{sec^2\frac{x}{2}d(\frac{x}{2})}{tan\frac{x}{2}+1}\\ &=\int \frac{d(tan\frac{x}{2}+1)}{tan\frac{x}{2}+1}\\ &=ln\begin{vmatrix}tan\frac{x}{2}+1\end{vmatrix}+C \end{aligned} 17.∫1+sinx+cosxdx=∫1+2sin2xcos2x+2cos22x−1dx=∫sin2xcos2x+cos22xd(2x)=∫tan2x+1sec22xd(2x)=∫tan2x+1d(tan2x+1)=ln tan2x+1 +C
18. ∫ d x 2 s i n x − c o s x + 5 \begin{aligned} 18. \int \frac{dx}{2sinx-cosx+5}&\end{aligned} 18.∫2sinx−cosx+5dx
令 t = t a n x 2 t=tan\frac{x}{2} t=tan2x,则 d x = 2 d t 1 + t 2 dx=\frac{2dt}{1+t^2} dx=1+t22dt, s i n x = 2 t 1 + t 2 sinx=\frac{2t}{1+t^2} sinx=1+t22t, c o s x = 1 − t 2 1 + t 2 cosx=\frac{1-t^2}{1+t^2} cosx=1+t21−t2
∴ ∫ d x 2 s i n x − c o s x + 5 = ∫ 1 4 t 1 + t 2 − 1 − t 2 1 + t 2 + 5 ⋅ 2 d t 1 + t 2 = 1 3 ∫ 1 ( 1 + 1 3 ) 2 + ( 5 3 ) 2 d ( t + 1 3 ) = 1 5 a r c t a n 3 t + 1 5 + C = 1 5 a r c t a n 3 t a n x 2 + 1 5 + C \begin{aligned} \therefore \int \frac{dx}{2sinx-cosx+5}&=\int \frac{1}{\frac{4t}{1+t^2}-\frac{1-t^2}{1+t^2}+5}\cdot \frac{2dt}{1+t^2}\\ &=\frac{1}{3}\int \frac{1}{(1+\frac{1}{3})^2+(\frac{\sqrt{5}}{3})^2}d(t+\frac{1}{3})\\ &=\frac{1}{\sqrt{5}}arctan\frac{3t+1}{\sqrt{5}}+C\\ &=\frac{1}{\sqrt{5}}arctan\frac{3tan\frac{x}{2}+1}{\sqrt{5}}+C \end{aligned} ∴∫2sinx−cosx+5dx=∫1+t24t−1+t21−t2+51⋅1+t22dt=31∫(1+31)2+(35)21d(t+31)=51arctan53t+1+C=51arctan53tan2x+1+C
19. ∫ d x 1 + x + 1 3 \begin{aligned} 19. \int \frac{dx}{1+\sqrt[3]{x+1}} \end{aligned} 19.∫1+3x+1dx
令 t = x + 1 3 t=\sqrt[3]{x+1} t=3x+1,则 x = t 3 − 1 x=t^3-1 x=t3−1
∴ ∫ d x 1 + x + 1 3 = ∫ 3 t 2 d t 1 + t = 3 ∫ t 2 − 1 + 1 1 + t d t = 3 ∫ ( t − 1 ) d t + 3 ∫ 1 t + 1 d t = 3 2 t 2 − 3 t + 3 l n ∣ t + 1 ∣ + C = 3 2 ( x + 1 ) 2 3 − 3 x + 1 3 + 3 l n ∣ x + 1 3 + 1 ∣ + C \begin{aligned} \therefore \int \frac{dx}{1+\sqrt[3]{x+1}}&=\int \frac{3t^2dt}{1+t}\\ &=3\int \frac{t^2-1+1}{1+t}dt\\ &=3\int (t-1)dt+3\int \frac{1}{t+1}dt\\ &=\frac{3}{2}t^2-3t+3ln|t+1|+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}-3\sqrt[3]{x+1}+3ln|\sqrt[3]{x+1}+1|+C \end{aligned} ∴∫1+3x+1dx=∫1+t3t2dt=3∫1+tt2−1+1dt=3∫(t−1)dt+3∫t+11dt=23t2−3t+3ln∣t+1∣+C=23(x+1)32−33x+1+3ln∣3x+1+1∣+C
20. ∫ ( x ) 3 − 1 x + 1 d x \begin{aligned} 20. \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1}dx\end{aligned} 20.∫x+1(x)3−1dx
令 t = x t=\sqrt{x} t=x,则
∫ ( x ) 3 − 1 x + 1 d x = ∫ t 3 − 1 t + 1 d ( t 2 ) = 2 ∫ t ( t 3 + 1 − 2 ) t + 1 d t = 2 ∫ t ( t + 1 ) ( t 2 − t + 1 ) t + 1 d t − 4 ∫ t t + 1 d t = 2 ∫ ( t 3 − t 2 + t ) d t − 4 ∫ t + 1 − 1 t + 1 d t = t 4 2 − 2 t 3 3 + t 2 − 4 t + 4 l n ∣ t + 1 ∣ + C = x 2 2 − 2 x 3 2 3 + x − 4 x + 4 l n ( x + 1 ) + C \begin{aligned} \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1}dx&=\int \frac{t^3-1}{t+1}d(t^2)\\ &=2\int \frac{t(t^3+1-2)}{t+1}dt\\ &=2\int \frac{t(t+1)(t^2-t+1)}{t+1}dt-4\int \frac{t}{t+1}dt\\ &=2\int (t^3-t^2+t)dt-4\int \frac{t+1-1}{t+1}dt\\ &=\frac{t^4}{2}-\frac{2t^3}{3}+t^2-4t+4ln|t+1|+C\\ &=\frac{x^2}{2}-\frac{2x^{\frac{3}{2}}}{3}+x-4\sqrt{x}+4ln(\sqrt{x}+1)+C \end{aligned} ∫x+1(x)3−1dx=∫t+1t3−1d(t2)=2∫t+1t(t3+1−2)dt=2∫t+1t(t+1)(t2−t+1)dt−4∫t+1tdt=2∫(t3−t2+t)dt−4∫t+1t+1−1dt=2t4−32t3+t2−4t+4ln∣t+1∣+C=2x2−32x23+x−4x+4ln(x+1)+C
21. ∫ x + 1 − 1 x + 1 + 1 d x \begin{aligned} 21. \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}dx \end{aligned} 21.∫x+1+1x+1−1dx
令 t = x + 1 t=\sqrt{x+1} t=x+1,则 x = t 2 − 1 x=t^2-1 x=t2−1
∫ x + 1 − 1 x + 1 + 1 d x = ∫ t − 1 t + 1 d ( t 2 − 1 ) = ∫ 2 t ( t − 1 ) t + 1 d t = ∫ 2 t ( t + 1 − 2 ) t + 1 d t = ∫ 2 t d t − 4 ∫ t + 1 − 1 t + 1 d t = t 2 − 4 t + 4 l n ∣ t + 1 ∣ + C = x + 1 − 4 x + 1 + 4 l n ∣ x + 1 + 1 ∣ + C \begin{aligned} \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}dx&=\int \frac{t-1}{t+1}d(t^2-1)\\ &=\int \frac{2t(t-1)}{t+1}dt\\ &=\int \frac{2t(t+1-2)}{t+1}dt\\ &=\int 2tdt-4\int \frac{t+1-1}{t+1}dt\\ &=t^2-4t+4ln|t+1|+C\\ &=x+1-4\sqrt{x+1}+4ln|\sqrt{x+1}+1|+C \end{aligned} ∫x+1+1x+1−1dx=∫t+1t−1d(t2−1)=∫t+12t(t−1)dt=∫t+12t(t+1−2)dt=∫2tdt−4∫t+1t+1−1dt=t2−4t+4ln∣t+1∣+C=x+1−4x+1+4ln∣x+1+1∣+C
22. ∫ d x x + x 4 d x \begin{aligned} 22. \int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}dx\end{aligned} 22.∫x+4xdxdx
令 t = x 4 t=\sqrt[4]{x} t=4x,则 x = t 4 x=t^4 x=t4
∫ d x x + x 4 = ∫ 4 t 3 d t t 2 + t = 4 ∫ t 2 d t t + 1 = 4 ∫ t 2 − 1 + 1 t + 1 d t = 4 ∫ ( t − 1 ) d t + 4 ∫ d t t + 1 = 2 t 2 − 4 t + 4 l n ( t + 1 ) + C = 2 x − 4 x 4 + 4 l n ( x 4 + 1 ) + C \begin{aligned} \int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}&=\int \frac{4t^3dt}{t^2+t}\\ &=4\int \frac{t^2dt}{t+1}\\ &=4\int \frac{t^2-1+1}{t+1}dt\\ &=4\int (t-1)dt+4\int \frac{dt}{t+1}\\ &=2t^2-4t+4ln(t+1)+C\\ &=2\sqrt{x}-4\sqrt[4]{x}+4ln(\sqrt[4]{x}+1)+C \end{aligned} ∫x+4xdx=∫t2+t4t3dt=4∫t+1t2dt=4∫t+1t2−1+1dt=4∫(t−1)dt+4∫t+1dt=2t2−4t+4ln(t+1)+C=2x−44x+4ln(4x+1)+C
学习资料:《高等数学(第六版)》 ,同济大学数学系 编
感谢您的关注,更欢迎您的批评和指正!